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The flow past a flat plate of finite width 

By J. W. ELDER 
Geophysics Division, D.S.I.R., Wellington, New Zealand 

(Received 8 February 1960) 

An experimental study of the incompressible flow near the side edge of a finite 
flat plate at zero incidence is reported for the Reynolds number range lo4 to 
lo6, but comparison with data already published shows that the conclusions are 
quantitatively valid for Reynolds numbers up to lo9. The laminar velocity field 
is everywhere convex and does not contain any secondary flow other than that of 
the normal diffusive growth of the layer, but has a logarithmic singularity at 
the edge where the stress is controlled by the local radius of curvature. The excess 
skin friction due to the edge is considerably greater than that given by calcula- 
tions based on the Rayleigh approximation but agrees with a recent Pohlhausen 
calculation by Varley (1958). Near the edge the high stress and ease of momentum 
diffusion makes the flow very unstable and turbulent spots occur well upstream 
of the normal transition zone in the middle of the plate. The spots originate from 
a nearly point-like region at the edge of the plate and grow linearly in time at the 
same rate as ordinary turbulent spots to sweep out a narrow tongue of turbulent 
fluid near the edge until they merge with the normal transition zone. Within this 
tongue a weak secondary flow of Prandtl’s second kind, driven by the anisotropic 
Reynolds stresses, begins to develop. In  fully turbulent flow when the secondary 
flow is largely localized to within a few boundary-layer thicknesses of the edge 
the secondary flow velocities are everywhere less than 0-04 of the free-stream 
velocity. Nevertheless, the secondary flows from each of the side edges interact, 
regardless of the width of the plate, to increase the total drag coefficient by an 
amount 0.0004 which is independent both of the Reynolds number and the width 
of the plate except when it is very narrow. This simple result allows apparent 
discrepancies between various formulations of the drag coefficient of a finite 
plate to be reduced to less than & 1 yo S.D. Of these formulations Schoenherr’s 
(1932) empirical relation agrees best with the present data. 

1. Introduction 
Here is an experimental study of certain three-dimensional boundary layers 

directed towards a knowledge of the laminar, transitional and turbulent flow 
over a flat plate of finite breadth and in particular to the flow near a side edge. 
Consider a thin rectangular plate of breadth B and thickness T < B in the XOZ 
plane of the Cartesian frame O X Y Z  in a uniform free stream of velocity U, 
parallel to OX,  as shown in figure 1. Let the side edges z = 0, B be rounded to 
some definite form so that the typical radius of curvature of the edge cross-section a 
is of order T and the leading edge of sufficiently slender elliptical form to avoid 
separation, except during studies of the fully turbulent flow when separation 
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and transition is encouraged by a leading edge of square form. The flow at sectionx 
will be determined by U,, the kinematic viscosity v, x, a and B. (The intensity 
of turbulence in the free stream will also be important but its effect will not be 
considered here.) Suitable dimensionless parameters are the Reynolds number 
R = Ulx/v, S/a and &/By where S(x) is the boundary-layer thickness. Near the 
leading edge for laminar, transitional and turbulent flow the flow will be domi- 
nated by R. Further downstream where the boundary-layer thickness is no 
longer small compared with a or B the flow will be influenced by the form of the 

FIUURE 1. Diagram of the edge of a flat plate showing the Cartesian co-ordinate system, 
the laminar, transitional and turbulent flow areaa and the form of the mean secondary 
flow streamlines. 

body cross-section. Such effects arise near the side edges of the plate and will 
be found to be dominated by S/a for laminar and transitional flow but by 6/B for 
turbulent flow. Initially the flow in the middle of the plate is unaffected by the 
presence of the edges, but for large values of SIB when the boundary-layer thick- 
ness is comparable with the largest dimension of the body cross-section the entire 
flow field is influenced by the presence of the edges. For very large values of 
6/B when the boundary-layer thickness is very much larger than B the flow is 
again almost everywhere independent of the form of the body cross-section. The 
present work is a study of the dependence of the various flow dgimes on the 
above parameters. Briefly, as sketched in figure 1, these flow rAgimes, laminar, 
transitional and turbulent, will be found to succeed each other in the normal 
fashion except that near the edge (1) in the laminar zone the wall stress is very 
large, (2) transition to turbulence occurs very early and (3) the turbulent flow 
maintains a weak secondary flow. These effects are not unexpected. 

In  spite of a considerable amount of work in recent years on three-dimensional 
laminar boundary layers (Moore 1956) very little progress has been made for the 
present case where the boundary wall is everywhere parallel to the incident flow. 
The only full solution of such a flow is the calculation by Lighthill & Glauert 



Flow past a $at plate of jinite width 136 

(1955) for the axisymmetric boundary layer on a circular cylinder. No detailed 
solution of the laminary boundary-layer flow near an edge has been given but two 
well-known approximations have been applied to the problem. The first is based 
on Rayleigh's (1911) method of obtaining a rough answer by assuming that 
momentum is convected everywhere at the speed of the free stream. Batchelor 
(1  954) has applied the method to cylinders of arbitrary cross-section, while 
Howarth (1950) has given a detailed solution for the flow near the edge of a 
quarter-infinite plate. Lighthill & Glauert (1955) showed that the approximation 
is good only a long way downstream. The second approach is Varley's (1958) 
valuable calculation of the total drag for cylinders of arbitrary section by a 
Pohlhausen method. 

The comparative stability of a laminar boundary layer over, say, a laminar 
jet is due to the restraining action of the wall. Near an edge it is to be expected 
that the restraint will be less than that distant from the edge so that disturbances 
will grow more quickly near the edge. In  fact, after my experiments were com- 
pleted, I found that there was already definite evidence in the literature to this 
effect. First, Murphy & Phinney (1951) to illustrate a paint method of indicating 
transition give a photograph showing the transition curve on a finite flat plate. 
Secondly, Tagori et al. (1955) have compared the position of transition as indicated 
by hot wires and the paint method by means of the flow over a semi-submerged 
plank. In  both instances no particular significance was attached to the form of 
the transition curves. The curves show, near the edges, wedges of turbulent 
fluid growing downstream at an angle of 8-10' to the wall (as sketched by the 
lines y = 0 and y = 1 in figure 1) till they merge with the normal transition zone. 
This is similar to the so-called transverse contamination of a laminar flow 
studied by Charters (1943). 

For practical reasons such as estimating the drag of ships it is desirable to 
make measurements of the frictional drag on flat plates due to the turbulent 
boundary layer at the largest possible Reynolds number, in which case it has 
been necessary to use rather narrow rectangular plates (Hughes 1954) when the 
drag coefficient may be influenced by the finite width of the plates. In  1954 
Townsend predicted that the inequality of the normal Reynolds stresses in the 
turbulent layer would produce a secondary flow near the edge. The Reynolds 
equations for the turbulent layer on a finite flat plate for a fluid of density p, 
mean velocity (U, V ,  W )  and fluctuating velocity (u, v, w) are 

au au au a _ -  a _ -  lap a=u a w  
ax ay az ay az pax (ay2 azt) 

u- + v- + w-+--uv+ -wu = - -- + v  --+- , (1.1) 

Consider a point (xo, yo, zo) distant from the edge or by symmetry where VW = 0 
so that integrating (1.2) with respect to y, 

- 
-pvt = P0--P,, (1.4) 
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where Pl is the pressure outside the layer and Po, wo are evaluated at (zo, yo, zo). 
Further, integrating (1.3) with respect to z, 

Near the wall 3- wT+ 27,/p (Klebanoff 1954) where 70 is the skin friction. If VW 
is concentrated in a narrow strip of width b then aE@/ay will be of order rO/pb. 
Within this strip the stress will not be parallel to the free stream and the high 
values of aG@/ay will induce rapid accelerations of the flow. Such a secondary 
flow is similar to that found in pipes of non-circular section and is a flow of 
Prandtl's second kind (1952). The mean streamlines of the secondary flow are 
sketched in figure 1. 

2. The experimental method 
The flow around a number of slender metal bodies was measured. The bodies 

were (1) flat plates of widths 2 ,  6, 22, 30 cm and thickness 0.16 om and a 
similar plate of width 20 cm but with one edge chamfered to lo", (2) rods of 
rectangular section 3.84 x 0.32 cm and 0.64 x 0.32 cm, called the 12 : 1 and 
2 : 1 rods, and (3) a circular cylinder of diameter 0.59 cm. They were all 100 cm 
long with the leading edge shaped to the form of 8 : 1 ellipses or left square for 
turbulent flow. The corners of the side edges were rounded to a radius of 
0-5 mm except for 0-15 mm on the chamfered plate. The bodies were supported 
from the rear so that the edge or axis of symmetry was near the tunnel centre line. 

Most of the measurements were made in the 15 in. wind tunnel of the Cavendish 
Laboratory. The working section is 38 cm square and 200 cm long. Speeds from 
30 to 1500cm/sec are available. The total turbulence intensity is about 0.1 % 
at medium speeds. Above 300 cm/sec U. is obtained from a manometer operated 
across the contraction and at  low speeds an anemometer is available in which the 
temperature of a 1 mm diameter wire, heated by a constant current, is determined 
by a thermocouple. The anemometers are calibrated by means of hot-wire 
measurements of phase in the periodic heat wake of a fine wire heated from the 
mains. Mean velocities were measured by either total head tube or hot-wire 
methods. No correction has been made for the finite size of the total head tube in 
relation to the boundary-layer thickness, Measurements of turbulent quantities 
were with hot wires of normal length 0-7 mm made from 2.5 p Wollaston wire. The 
wire gives an output proportional to 2[{ 1 + (u/ U)*} - 11 rather than u/ U but the 
difference is usually small. Further, it has been found that heat conduction and 
convection effects lead to serious errors if hot wires, run at 450"K, are used 
closer than 1 mm from a thermally conducting plate in air. These effects limit 
the accuracy of measurements of skin friction using a hotwire to & ~ O % S . D .  
Records of the velocity trace were obtained from a photographic drum camera 
with a film speed up to 200cm/sec and studies of transient behaviour were by 
means of a camera and a triggered oscilloscope. 
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The detection and direct measurement of mean secondary flow was performed 
with a vortameter (Truitt 1956). This is a very thin vane, normally 1 x 1 cm, 
mounted on a spindle so that the vane can rotate. When the spindle is pointed into 
the wind the vane remains stationary unless there is a component of vorticity 
parallel to the wind. Rotational speeds were determined stroboscopically. 

Turbulent skin friction was determined by the surface-tube method developed 
by Preston (1954). Provided the surface tube of diameter d lies within the region 
of wall similarity there exists a relation, 

d2Ap/pV2 = P(Tod2/pV2). 

Ap is the pressure difference between the pressure in the surface tube and the 
local static pressure, and T~ is the skin friction. Preston determined the function F 
by experiment for tubes of inner to outer diameter ratio 0.6. Comparison of 
the results near an edge, for tubes of different diameter, show that reliable mea- 
surements can be made up to one tube diameter from the edge. 

Some qualitative experiments were made in the 14in. water flume of the 
Engineering Laboratory, Cambridge. A flat plate was immersed in the water in 
the flume and permanganate solution injected through a narrow slit 4 cm down- 
stream of the leading edge (or more simply by merely sprinkling the plate with dye 
crystals). This dye later normally remained close to the wall as it was convected 
downstream but would be quickly broken up by any disturbance to the flow. 
The detailed motion of such disturbances and in particular that of turbulent 
spots was clearly revealed by the method. 

Throughout this work I have used as a measure of the boundary-layer thick- 
ness 6, the distance measured normal to the wall at  which the mean velocity 
U = O.99U1. At first sight this would appear to be a difficult quantity to measure. 
It is found, however, that if the velocity profile is plotted on probability paper 
the outer part of the layer generally gives a straight line. This is found to cover a 
wide range of laminar and turbulent flows and 6 can thus be found quite accur- 
ately from the straight line drawn through the outer experimental points. It is 
worth noting that for a laminar Blasius layer 6 = 5 (vs/U$, whereas for a turbu- 
lent layer on a flat plate 6 varies from 0.02s to 0 . 0 1 ~  over the range R = los to 
lo9 (Schlichting 1955). 

3. Laminarflow 
The experimental velocity distribution 

Figures 2 and 3 show the distribution of U on a plane x = constant, based on 
measurementswith a 1 mm total head tube made at x = 20 cm, R = 1-06 x lo5 for 
the flat plate of figure 2 and at  x = 37 cm, R = 7.2 x lo4 for the 2 : 1 rod of figure 3. 
It is important to notice, especially in comparison with the corresponding turbu- 
lent flows below, that the U-distributions are everywhere convex. This is strong 
evidence that there is no secondary flow other than the diffusive growth of the 
layer so that even within the boundary layer the flow is nearly unidirectional. 

The boundary-layer thickness a t  the edge of the flat plate is only 0.35 of its 
value distant from the edge 6, so that as the edge is approached the local skin 
friction rises. The local skin friction coefficient cf is defined in terms of the wall 
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stress r0 by r0 = &pUqct. The coefficient distant from the edge will be written 
ct,. Experimental values of ct/cfoo, obtained from hot-wire measurements close 
to the plate, are shown in figure 4. The points are fitted closely for laminar flow 
by the empirical functions (accurate to 10 % s.D.) 

0 < z/& < 2, cf/cta, = 1.53(~/6,)3, 
= 0*78+0.846,/~, 1.3 < z/& < 4. 

Defining the excess friction factor 

a- 99 

95 " 

FIamE 2. Lines of equal u for laminar flow at z = 20 cm and R = 1.06 x lo6 on a 
flat plate. Horizontal scale = & x vertical scale. The contour values are 100 U/U,. 

99 I 
FIaURE 3. Lines of equal U for laminar flow at x = 37 cm and R = 7.2 x lo4 on a rod of 

section 2: 1 (0.64 x 0.32 om). The contour values are 100 U/U,. Scale 1 : 1. 
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we find K = 1.77 f 10 % S.D. Alternatively, the total drag coefficient C, is such 
that (C, -CFm)/CFm = 53vx/U,Ba. This value is greatly in excess of the value 
K = 0.1 given by Howarth (1950) in his calculation based on Rayleigh’s 
approximation. The Rayleigh approximation is clearly inadequate. On the 
other hand Varley’s (1958) calculation gives K = 1.43, only 20 yo below the 
experimental value. This is quite good agreement. 

0 1 2 -  

Zl&O 

3 
4- 

4 

FIGURE 4. Lateral variation of laminar and turbulent skin friction on a flat plate. The 
turbulent values (discussed in $5) are for a plate of width B = 6 cm at z/B = 10 and 
R = 4 x  106. 

The edge stress 
Near the edge the stress rises and will become infinite as the thickness of the plate 
approaches zero. For example, consider a plate of width B for which the edge 
cross-section is convex and symmetrical about y = 0 but otherwise arbitrary. The 

shearing force on unit length of this plate is p- as, for a fluid of viscosity 

p, where n, 8 are co-ordinates normal and tangential to the plate cross-section. 
This expression will be independent of n near the wall where the acceleration of 
fluid is negligible. Hence, using polar co-ordinates (r,O) for the edge region, with 
origin at the centre of curvature corresponding to each element of the edge 
cross-section and with z = 0 corresponding to 8 = 0, n, say, 

$ aa: 

= constant as n --f 0. 
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Both integrals are finite so that raU/ar is a function of 6' as n + 0. Hence near 
the wall U behaves like log ria where a is the local radius of curvature. Unless, 
however, 6 9 a, so that the region near the wall where the acceleration of fluid 
is negligible is at least of extent comparable with a, U is not of logarithmic form 
over a significant portion of the boundarylayer but rather, since log r/a = (r - a)la 
when (r - a)/a < 1, U is of linear form near the wall. 

vxlv ,  a2 

FIGURE 5. Displacement thickness A and skin friction T~ for laminar flow along a circu- 
lar cylinder of radius a. Theory by Lighthill & Glauert (1955). Logarithmic scales. 

It was Batchelor (1954) who first pointed out the importance of the local lateral 
radius of curvature in laminar flow along cylinders in his discussion of the 
corresponding Rayleigh problem. It should be possible to obtain an estimate of 
the skin friction at  an edge by using the results of Lighthill & Glauert (1955) 
for the axisymmetric flow along a circular cylinder of radius a. Their solution is 
developed in terms of the parameter (vx/Ula2)*, proportional to the ratio of the 
flat plate boundary-layer thickness to the cylinder radius. They give expressions 
for the skin friction T~ and the displacement thickness 

In  order to proceed it is desirable to compare these calculations with experiment. 
Figure 5 compares experimental values of ar0/pU1 and A / m 2  obtained from hot- 
wire measurements on the circular cylinder with Lighthill & Glauert's values. 
The agreement to within 10-20 % is quite good so that we can now calculate the 
ratio of skin friction on a circular cylinder for a given (vx/Ula2)* to that a t  the 
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same x on an infinite flat plate. The flat plate skin friction is given by cfm = 0-664/ 
( Ulx/v)a. Typical values are shown below : 

(vz/ula2)+ 0 1 2 5 10 20 

cr(a)/cfm 1.0 2.3 3.4 6.1 9.8 16.3 

Two experimental values of this ratio, accurate to 5 20 yo s.D., were obtained. 
The first was for the square edge of the flat plate where a = 0.5 mm, (vz/Ulaz)+ 
was 3.6 and the experimental value of cf(a)/crm was 4.0 compared with the cal- 
culated 4.9. The second was the chamfered edge of the plate for which 
a = 0-15mm, (vx/Ula2)~ = 17.6 and the experimental value of cl(a)/ce was 
10 compared with 14.6. This approximate agreement supports the demonstration 
that the viscous flow near an edge is also governed strongly by the local radius of 
curvature. 

4. Transitional flow 
The experimental results 

It has been suggested that because of the comparative ease of momentum dif- 
fusion near the edge disturbances first become apparent there. This is seen in 
figure 6 which shows both the U-distribution and the (J?/ U)-distribution from 
measurements at z = 5 1 cm near the edge of the 20 om plate and at two values of 
the Reynolds number, 1.65 and 2-70 x lo5. At R = 1.0 x lo5 velocity fluctuations 

I I I 
-2 O c m  2 
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FIG- 6. Transitional Aow distributions of 100 UlU, and lOOyl~/U on a finite flat 
plate at z = 61 cm, R = 1.66 and 2.70 x los. Horizontal scale = x vertical scale. 
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were barely detectable anywhere on the plate, breakdown to turbulence com- 
menced near the edge a t  R = 1.7 x lo6, and a t  R = 4-5 x 106 the whole plate was 
turbulent. Also it is seen that associated with the growth of the velocity fluctua- 
tions is the growth of the secondary flow discussed in $5. 

1.70 

1.77 

183 
- I '  

A 

B 

C 

D 

E 

376 

441 G 

FIQURE 7. Oscillograph traces of u/U at stated values of 10-'R and fixed sensitivity. 
A-E probe near the edge at (61, 0, -0.06) cm. F-G probe distant from the edge at (93, 
0.06, 5.2) em. 

The character of the velocity fluctuations can be seen in portions of oscillo- 
graph traces shown in figure 7. The traces show u/ U as a function of time. Traces 
A-E are for the probe just below the edge,at (51,0, - 0.064,) em, while traces F, G 
are for the probe a t  (97,0.064,5-2) cm somewhat distant from the edge. The velo- 
city and time scales are approximately the same for all the traces. Notice that the 
variation of Reynolds number is obtained by varying the tunnel speed and leaving 
the probe fixed. Even near the edge the first fluctuations are wave-like distur- 
bances (A). These rather irregular waves grow in amplitude until breakdown 
occurs (B). From these points of breakdown a turbulent region is initiated, very 
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small at first but growing nearly linearly in time as it is swept downstream. TWO 
such regions, or spots, are seen in (C). As they proceed downstream the spots 
begin to merge (D) until the layer is swamped with spots and it is then entirely 
turbulent (E). Distant from the edge as in (F), (G) a similar sequence occurs, but 
only at a much higher Reynolds number. 

Thus near the edge there is a narrow tongue of disturbed fluid while the bulk of 
the boundary layer remains relatively undisturbed. Within this tongue transition 
is obtained by the growth of turbulent spots; spots which are in every way simi- 
lar to  spots hitherto studied on a wide flat plate. It should be noted that spots 
are characteristic of transition near a wall regardless of the wall cross-section. 
For example, it  was demonstrated both in the wind tunnel and the water channel 
that turbulent spots are also present during transition in the axisymmetric flow 
along a circular cylinder. Further, the rate at which the tongue of disturbed 
fluid encroaches on the surrounding boundary layer can be estimated from the 
oscillograph traces by reading off the intermittency factor y, the proportion of 
time the fluid is turbulent. For example, in trace C ,  y = 0-27 and in trace E, 
y = 0.99. It is then found that curves of constant intermittency, drawn in the 
plane of the flat plate, are nearly straight lines which make an angle of 7.9" 
to the edge (as sketched in figure 1). 

The growth of the turbulent tongue 

Dhawan & Narasimha (1958) have shown that Emmons's (1951) description 
of a transition region in terms of overlapping turbulent spots is in excellent 
agreement with experiment. They deduce the remarkable fact that breakdown of 
a laminar boundary layer, while occurring randomly in time, commences in 
almost point-like areas (of extent < a), all of which (for a plate of infinite width) 
lie very nearly on a straight line normal to the flow. This immediately suggests 
that the breakdown responsible for the tongue of disturbed fluid occurs only at a 
single point-the point P of figure 1. The linear growth of the curves y = con- 
stant would then simply be due to the linear growth of individual spots liberated 
from P, but if this were the case the rate of spread of this tongue (7.9') should 
be similar to the rate of spread of a single spot. The rate of spread of isolated spots 
has already been given by Schubauer & Klebanoff (1955) as 8.6' (U, = 300cm/ 
see), and has been independently measured here as 8.1". This is in excellent agree- 
ment with the value of 7.9'. Further, it was directly demonstrated by using two 
hot-wire probes placed in the tongue of intermittently turbulent fluid upstream 
of the normal transition zone that turbulence never occurred at the downstream 
probe without having first occurred at the upstream probe. Thus near an edge 
breakdown originates near a single point. 

The above considerations immediately raise the problem of how the edge 
tongue will merge with the normal transition region on the portion of the plate 
distant from the edge. The question reduces to the problem of the interaction of 
two spots as they grow and merge into one another. In  a subsequent paper it 
will be shown that the area of a plate which is turbulent at any moment is simply 
the sum of the areas covered by the turbulent spots if each spot grows indepen- 
dently of its neighbours. There are thus two possible forms, sketched in figure 8, 
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of the transition curve on a plate of finite width. When the disturbance level in 
the free stream is low (generally at  low V,) the edge transition regions will have 
overlapped before normal transition occurs. At higher disturbance levels the 
normal transition region will have moved sufficiently upstream so that both 
transition regions are present. 

FIGURE 8. A sketch of the transition curve on a finite plate for (a) low and 
(b)  high free-stream turbulence. 

5. Turbulent flow 
The secondary $ow 

Figures 9 and 10 show the distribution of U on a plane 5 = constant, based on 
measurements made with the 1 mm total head tube at 5 = 97 cm, R = 8-7 x lo6 
for the flat plate of figure 9 and at x = 92 om, R = 6-7 x lo6 for the 2 : 1 rod of 
figure 10. The most obvious features, as distinct from the corresponding laminar 
flows shown in figures 2 and 3, are that the lines of constant U are no longer 
everywhere convex and that the boundary-layer thickness at the edge is 1.286, 
whereas in the laminar flow it was only 0.356,. The distortion of the U-distribu- 
tions near the edge is strongly suggestive of a secondary flow of Prandtl's second 
kind in which the flow is produced by the anisotropic Reynolds stresses. But 
before this can be asserted it is necessary to dispose of the other possibilities. 
Could the secondary flow be due to the vortex found near the edge of a finite 
plate which is producing lift because of some error of alignment '2 First, the flow 
was symmetrical about y = 0. This was directly verified. The lifting vortex is 
found on one side only and does not therefore produce a symmetrical field. 
Secondly, the secondary flow is found only when the flow is turbulent whereas a 
lifting plate has an edge vortex even in laminar flow. This query may be put 
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even more generally. Is the secondary flow already present in the laminar flow? 
The 0-distribution for laminar flow was always everywhere convex. Thus the 
explanation of the secondary flow is to be found in the behaviour of the turbulent 
layer. 

A direct demonstration that the secondary flow is due to the Reynolds stresses 
is obtained with the vortameter, which gives the secondary flow vorticity. The 
vortameter did not rotate in the laminar field, but immediately transition com- 
menced the vortameter began to rotate. At the same time the U-distribution was 
no longer everywhere convex. The vortameter readings were anti-symmetric 
about y = 0 and the departures from convexivity developed through the tran- 
sition region. These phenomena were found for the 30, 22, 6 cm plates and the 
12 : 1 and 2 : 1 rods so that the phenomena cannot be ascribed to a chance con- 
figuration of a single plate. 

0.5 an - 
/ T 

I 

FIGURE 9 FIGURE 10 

FIGURE 9. U-distribution for turbulent flow on a flat plate. Scale 1:  1, B = 30 om, 
2 = 97 cm, R = 8.7 x 106. The h e  lines are the secondary flow streamlines. Compare 
with figure 2. The contour values are 100 UjU,. 

FIGURE 10. U-distribution for turbulent flow on the rod of section 2: l .  Scale 1:1, 
z = 92 cm, R = 0.7 x lo6. Compare with figure 3. The contour values are 100 U/U, .  

The secondary flow has been measured with the vortameter for the flow of 
figure 9. The vortameter rotational frequency n measured in c/s is proportional 
to the vorticity. The secondary vorticity distribution is shown in figure 11. 
Notice that not only is the distribution symmetrical about y = 0, it is also very 
nearly symmetrical about a line z = - 0.5 cm = - 0.017B. The flow is such that 
near the wall fluid is moving away from the plate. A linear relation was found 
between Ul and the frequency n at fixed x of the form AUl = 126An and such that 
n = 0 when the transition point is at z. This shows that the mean secondary 
vortex can be considered to be of constant pitch = 126 cm = 4-2B. Because such 

10 Fluid Mech. 9 
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a simple relation exists between U, and n it is possible to  replace n by the secon- 
dary flow stream function $ defined by 

The stream function has been evaluated from (5.1) and experimental values of 
n by a relaxation calculation and is shown in figure 12. The stream function has 
also been drawn in figure 9 (fine lines) where the region outside 7,h/7,hmax = 0.2 has 
been drawn, taking into account both the calculated values of $ and the experi- 
mental determination of the inclination of the secondary flow vector by means of 
the observed inclination of a very light vane. The bulk of the secondary flow 

I 
1Qn I I 

FIGURE 11 FIGURE 12 

FIQURE 11. Secondary flow vorticity distribution in c/s, near an edge. Maximum 
value = 8.8 c/s. B = 30 c m ,  x = 97 om, R = 8-7 x lo5. 6 = 1.9 om. 

FIGURE 12. Secondary flow stream function l/r of (5.1) normalized to a maximum 
value of 10. 

is seen to be confined to a region of dimensions 6 near the edge. From $the second- 
ary velocity is easily found. In  figure 13Ishow the maximum outflow W = - a$/ay 
evaluated on the line of symmetry z = - 0-5 cm. W is everywhere < 0-037U1, 
so that in fact the secondary flow is quite small. 

It would be possible to consider the mean secondary flow from two idealized 
points of view. First, it  could be considered as a vortex, that is a small region of 
rotational flow outside of which the mean flow is irrotational. If this idea was 
completely correct the vane would have reversed its direction of rotation as it 
was moved into the core. In  fact as shown in figure 8 such is not the case. Secondly, 
the secondary flow could be considered aa a strong outflow near the wall and a 
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diffuse inflow over a large portion of plate. This idea also is not borne out by the 
form of $. In fact, 11. shows that the flow is somewhere between the two. Neverthe- 
less, it is important to remember here that the vane was of k i t e  size; a 1.0 cm 
square. Because of the finite size of the vane it may be argued that the explanation 
of the unidirectional rotation either side of y = 0 is in fact due to a strong outflow 
at the wall into which the vane is dipping. This assertion is clearly incorrect 
since the rate of rotation was extremely small even at z = 0-36, with the vane 
almost touching the wall. $ will certainly need correction due to the finite size 
of the vane, but unfortunately it is rather difficult to see how this might be done. 

-004 t 

+0-02 ' 
FIGURE 13. Secondary flow profile at z = - 0.6 c m  = - 0.017B. 

Figures 9, 11, 12, 13 me all for the same flow. 

The total drag 

Although there is considerable empirical data in the literature on the drag 
of flat plates, by far the most valuable is that due to Hughes (1954) who proposed 
an empirical relation for the total drag coefficient C, of a wide plate of length L 
and breadth B over the range R = 0.04 to 260 x lo6 

(5.2) CF = 0.066 ( - 2.03 + 1 + rL/B). 

His data provides overwhelming evidence to support this dependence of CF 
on R but the choice of the so-called form factor 1 + rL/B is unsatisfactory as the 
coefficient r varies strongly with both LIB and the Reynolds number U1B/v. 
It was, in fact, the need to clarify the behaviour of this factor that started the 
present investigation. 

Figure 14 shows the distribution of skin friction obtained with a surface tube 
near the corner of a finite flat plate of breadth 22 cm at fixed wind speed 1050 cm/ 
sec. The forward edge was square so that transition occurred at z = 2mm, 
R = 1300 in the separated zone of extent 1.1 cm near the edge. The skin friction 

10-2 
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rises rapidly from the line of reattachment marked cf = 0 in figure 14 and except 
for a complex region in the corner 0 < x/B < 2,O < x/B < 0.1 shows the gradual 
increase towards the side edge already shown for comparison with the laminar 
case in figure 4 and shown in more detail in figure 15. Note that crm is the skin- 
friction coefficient for z = 4B. Near the leading edge the behaviour is complex 
with at first two maxima, both displaced from the edge, then a single maximum 
displaced from the edge, and for x/B > 2 (R  < 3.105) a monotonic increase of skin 

Z f B  

0 0 1  0.2 ------- --- - - _ _  - _ _ _ _ -  
D ;  

0 

FIGURE 14. Distribution of skin-friction coefficient los c, near the corner of a finite 
flat plate a t  fived U,. B = 22 ern, U,B/v = 1-66 x lo5. 

friction to  a maximum at the edge where cf(0)/cf, i 1.8 (much smaller than the 
laminar value). Included on the curve for x/B = 3 is the corresponding data for 
the 6cm wide plate at x/B = 10. The close similarity of the data from the two 
plates shows that the lateral distribution of ct is determined by x/B rather than 
x/S as it is in the laminar case. Further downstream when 6 is comparable with 
B the variation of cf is less pronounced and this is illustrated also in figure 14 for 
x/B = 20 on the 2 cm wide plate. 
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The distribution of skin friction cfm along the centre line is shown in figure 16 
for two plates of width 6 and 22 cm. Included in figure 16 is cfm obtained from 

(5.3) I cjm = RdC,,/dR, 

where C,, = 0.0624 ( - 2.03 +log,, R)- 
an expression of similar form to (5.2) but in which the coefficient 0.066 hrts been 
replaced by 0.0624 f 0.2 yo S.D. This high accuracy does not refer to the absolute 

1 

8 
0" 
0" 
--. 

1 5 

I 

I 1 
0 0 1  02 

ZIB 

FIGURE 16. Lateral distribution of c, at values of x/B stated on the right-hand side of 
the figure. U, = 1050cm/sec. a ,  B = 22cm, x/B = 0.5, 1, 1.5, 3 (data of figure 14); 
0 ,  B = 6cm,x/B = 1 0 ; o , B  = 2cm,x/B = 20. 
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accuracy of the coefficient but to the internal consistency of 14 separate deter- 
minations of the coefficient qver the range R = 5 ~ 1 0 ~  to $lo6 for both the 6 and 
the 22 cm plates. (6 values from the 22 cm plate gave A = 0.0622 and 8 values 
from the 6 cm plate gave A = 0.0626.) The high accuracy does, however, support 
the functional form given by Hughes for the variation with R and incidentally 
shows that the total head tube method of measuring skin friction is very reliable. 
It should be noted that the velocity and stress distribution near the edge was 
the same for both a square edge and one chamfered to  a sharp 10' wedge. 

10" R 

FIGURE 16. c, along the centre line zjB = 0.5 of a Gnite plate compared with values 
obtained from Hughes (1954) formula (6.3). 0 ,  B = 22 cm, 0 ,  B = 6 cm. Also shown is 
the mean excess G-c,,. The measurements cover 0 < z/B < 10. 

Also given in figure 16 is the mean excess friction - ct, obtained by computing 
the mean skin friction cf with respect to z at a fixed x. As is also shown in the 
behaviour of cjm, the influence of the leading edge is rapidly lost and the excess 
rises to a value independent of both R and B. This remarkable result is the key 
to the differences between various formulations of the drag of a flat plate. This 
excess will give also an increase in the total drag coefficient of a finite plate over 
that given by (5.3) and for the data of figure 15 this is given below. 

10-6R 0.2 0.4 0-6 0-8 1.0 1.2 1.4 1.6 
10sACF 0.008 0.020 0.037 0.057 0.086 0.120 0.153 0.177 

For larger values of R ACF = 3-62 x 10-4- 30/R. (5.4) 
The excess drag can thus be expressed as the sum of two independent contribu- 
tions, one due to the finite size of the plate and arising from the flow near the side 
edges, the other from the particular mode of separation, transition and reattach- 
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ment near the leading edge. The contribution to the total drag from the leading- 
edge flow will be independent of x downstream of the edge region in which ct 
increases rapidly so that the contribution to CF will be of the form - A/R. In 
fact A = Rc[CF, - CPL], where R, is the Reynoldsnumber at the end of the leading- 
edge region, C,, is the turbulent friction coefficient given by (5.3) at R, and CFL 
is the actual friction coefficient for the edge region. For natural transition A can 
easily be as large as 103 and throughR, is verydependent on Ul, but in the present 
case of transition behind a square leading edge A is almost independent of U, 
and the value A = 30 given by (5.4) is reasonable. 

"P 
FIQKRE 17. The percentage form factor for the total drag as a function of the aspeat ratio 
at various U,B/v. The experimental points are given by: 0 ,  Hughes (1964) sheet values, 
U,B/v = 2.0 x lo6. , Hughes (1964) pontoon values, U,B/v = 1.9 x 106. 0 ,  Allan t 
Cutland (1963) plank values, U,B/v = 0.81 x 10'. 

The determinations of drag reported in the literature are largely for a series of 
runs at fixed U,, B with variable plate length x. This data has been collected in 
figure 17. The curves of constant U,B/v are obtained from ACF of (5.4) and CF 
of (5.3) at R = (U.B/v) (z /B) .  The experimental data given by Hughes (1954) 
for plastic sheets with U,B/v = 2.0 x 10s and pontoons with U,B/v = 1.9 x 108 
and by Allan Q Cutland (1953) for planks with UIB/v = 0.81 x lo7 lie close to the 
appropriate curves derived from the present data. The sheet values of CF are 
accurate to k 1.0 yo S.D. and the pontoon values to k 0.5 yo S.D. while the con- 
sistency of the measurements reported here suggests an accuraoy of k 0.7 yo S.D. 

for the total head values of C,. Thus all this data is consistent to better than 

A number of semi-empirical relations have been given (Schlichting 1965) for 

(5.5) 

k 1 yo S.D. 

C,, of which the theoretically soundest is that due to Townsend (1966) 

4 2  kCj$ ( I  - R,,/R)* = log RC, + 1.1, 
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where k = 0.41 is the logarithmic velocity profile constant, R, is a constant of 
integration and 1.1 is an empirical constant obtained from the known velocity 
distribution. If R, = 0 and the 1-1 is ignored, (5-5)  is similar to the widely used 
Schoenherr (1932) relation 

The experimental constant 0.242 corresponds to k = 0.394, considerably different 
from the accepted value 0.41. As values of C, are sensitive to  the choice of this 
coefficient (5.6) must be regarded simply as an empirical relation. Schoenherr’s 
data were obtained from the total drag of finite plates and no attempt was made 
to allow for the effect of aspect ratio. But since by (5.4) the effect of the aspect 
ratio is merely to increase the drag coefficient by an almost constant amount so 
that the drag is almost independent of the aspect ratio, then Schoenherr’s relation 
or any other empirical relation obtained by ignoring the effect of aspect ratio 
should give a good estimate of the total drag of any finite plate. Values given by 
Schoenherr’s relation exceed those of (5.3) by (1.0, 4.5, 4 1 ,  3.2, 2.6) x at 
R = (lo5, lo6, lo7, lo8, lo9), while for the Prandtl-Schlichting relation (Schlich- 
ting 1955) 

the corresponding values are (0-8, 5-1, 4-8, 3-8, 3.2) x These differences 
follow quite closely those given by (5.4) with discrepancies in the various values 
for C, generally much less than 10-4 and certainly not more than the experi- 
mental error of rather less than 

I n  estimating the drag of ship-like bodies the values of C, given in (5.3) can be 
used with confidence but due to the presence of a free surface or a keel of large 
angle the excess friction AC, may differ from (5.4). However, the presence of a 
free surface does not appear to affect AC,, since the results of Allan & Cutland 
(1953) who used a semi-submerged plank are consistent with all the other data 
presented here. The effect of the keel angle on AC, could be obtained by local 
skin-friction measurements with the surface tube on a body made of two equal 
finite flat plates at zero incidence and touching each other along an edge. 

It should be noted that (5.4) contains a contribution to the drag independent 
of viscosity. This result was, however, obtained by measurements only up to 
R + los and in spite of being in good agreement with published results up to 
R + lo9 is entirely empirical. It cannot be used with confidence outside the 
limits of the original data, R = 104 to lo9 and in particular cannot contribute to 
the question of whether or not the drag coefficient of a finite plate at R = co is 
zero or finite. In  practice large values of R can only be achieved at large values of 
6/B so that the question of drag at R = co is best answered by studies of the flow 
along a long thin wire. 

The result that AC, is independent of B is surprising for it may have been sup- 
posed that provided B is sufficiently large for the two edge flows not to interact 
then the contribution of the edge flow to AC, would be of the form (constant)/B. 
The data clearly show that this is not so, and the edge flows must interact for all 
values of B. A comparison of the lateral distribution of ct on the 6 and 22 cm wide 
plates at x/B = 10, 3, respectively, as already given in figure 15 shows that while 
the rise of cf at the edge is much the same in the two cases the lateral extent of the 

(5-6 1 o.242c ,~  = logl,RC,. 

c, = 0*455/(10g,,R)~-~~, (5.7) 

1 yo S.D. 
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excess edge friction is less for the narrower plate. It is unexpected that in spite 
of this interaction cfm is unaffected. Nevertheless, ctm will be affected when the 
plate is sufficiently narrow for the edge flows to overlap. Any effect is small since 
the values of A determined from the 6 and 22 cm plates were 0.0626 and 0.0622 
with a barely significant difference of 0-7y0, while the value obtained from a 2 cm 
wide plate 0-0600 is still only 2-4 % below the value for a wide plate. 

I gratefully acknowledge that my period of research at Cambridge was made 
possible by my employers, the New Zealand Defence Scientific Corps. Some of the 
material presented here was described by Dr A. A. Townsend (1958) at the Frei- 
burg symposium on boundary-layer research. 
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